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This article determines the wideband capacity limit for noncoherent Gaussian
channels which are constrained to radiate signals with peak power equal to the
average power. The capacity is a function of only two parameters, the predetec-
tion signal-to-noise ratio ST /N, and the number of signals M. It is shown that the
capacity increases monotonically to a wideband limit as M increases. The role
played by this limit for noncoherent Gaussian channels is similar to that played by
the famous Shannon limit, S/N,, for coherent channels. Numerical and graphical
results are presented for parameters of interest. It was found that an excellent
approximation to the wideband noncoherent limit is S/N,+ ST/N,/(2 + ST/N,).

l. Introduction

Multi-frequency-shift-keying (MFSK) is a well-known
communications technique (Ref. 1) which is particularly
suited for channels with rapid random variations of the
phase of the carrier signal. Phase instabilities of this kind
are often due to turbulence in the electromagnetic propa-
gation medium through which the signals pass, as, for
example, the solar corona and the atmospheres of Venus,
Jupiter, and Saturn. A useful parameter for characteriz-
ing the degree of phase instability is the predetection
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signal-to-noise ratio «*/2 = ST/N,, where § is the received
signal power, N, is the one-sided spectral density of the
Gaussian noise in the system, and T is the predetection
correlation time used by the receiver. The critical quantity
here is the predetection correlation time, which is a mea-
sure of the rapidity with which the carrier phase varies.
A receiver, in order to average out or filter the received
noise, will correlate for as long as possible, provided the
carrier phase is constant. However, if the correlation time
exceeds T, a random phase change in the carrier will
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result in an averaging out of the desired signal as well as
the noise.

The purpose of this article is to determine the ultimate,
theoretical performance of MFSK systems in terms of
the basic constraints required by practical engineering
design. There are two: one is the already-mentioned pre-
detection signal-to-noise ratio imposed by the channel;
the other is that the peak power be equal to the average
power S, as required by current transmitter technology.
A subsidiary constraint is the system bandwidth W, which
is determined, ultimately, by the complexity permitted in
the receiver and the data rate of the system. Apart from
these considerations, the bandwidth of an MFSK system
determines the maximum number M of orthogonal signals
that can be distinguished in time T, and the bandwidth is,
by definition,

M =2WT

Furthermore, the question of when an MFSK system may
be considered “wideband,” i.e., when the assumption that
W =« is a good approximation, depends on the prede-
tection signal-to-noise ratio. It is shown that the wide-
band approximation is valid if M =~ T exp (ST/N,) for
ST/N, > > 1, which is not surprising to those familiar with
MFSK. However, an M = 16 suffices when ST /N, < 1.

The main result is a proof that the wideband MFSK
capacity, normalized to the famous wideband capacity of
the coherent Gaussian channel C,, = S/N, log. e bits/s,
where ¢ = 2.718 - - - is the base of natural logarithms, is

Cl(a)/Cyp =

2a*2/wxexp [~ é (x* + of):l Iy (ax) In 1, (ax) dx — 1
(1)

where «®/2 = ST/N, is the predetection signal-to-noise
ratio, and

1 i
Iy (ax) = :/ ex s o dg (2)
o
The capacity is plotted as a function of the predetection
signal-to-noise ratio in Fig. 2, together with a useful curve-

fitting approximation:

/2 ST/N,
Cla)/Co > 5378 = T ST/N, (3)

Figure 3 exhibits capacity for finite bandwidths.
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In terms of the minimum energy-to-noise ratio per bit
(Ep/No)min, the results are simply

(Ey/No)min = [C{a)C,] " log. 2

~0.7(ST/N,)/(2 + ST/N,) (4)

The theoretical results are corroborated by experience at
both high and low values of the predetection signal-to-
noise ratio. As the predetection signal-to-noise increases,
the wideband MFSK capacity approaches C,,. This is as
it should be, because, at high enough ST /N, it is possible
to estimate and track out the random phase process and
to use coherent signaling techniques. However, although
MFSK signaling can achieve (in theory) the coherent limit
as ST/N, > oo, coherent techniques (Ref. 1) become more
practical since they do not require the exponential rise in

bandwidth.

1l. Formulation

A block diagram of an MFSK system is illustrated in
Fig. 1. From a channel capacity point of view, the MFSK
channel is characterized by transmission of one of M dis-
crete inputs numbered 1,2, - - - M, and M continuous
outputs r,, 7., - - -, 1y, received every T seconds, which
have the following probability distribution:

p(r|m) =

T €Xp <—

Tc €Xp l:—

rﬁ) fork=£=m

fork =m

(3)

0O = DO b

(4 @) [ 1 (am)

where p (r,| m) is the conditional probability density of
7, given m (Ref. 2). The probability density of the M-vector
r=(ry,r, ' - ,ry) is then

1
p(r|m)=g(r)exp (— 3 a‘*’) L, (ary,) (6)

where
i 1
¢(R) = II R, exp (~ 2 Rz) )
k=1

The term g(R) may be regarded as a joint probability
density of M independent identically distributed random
variables R,,R,, - - -, Ry.
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Ill. Information and Capacity

The channel capacity is

Cy(a) = 1 max Iy (a, P)log, e bits /second (8)

T
where
M
Iy (a, P) = / Z Pop(r)mn[ PEI™ T4 (g
m=1 ]_21 Pip(r]j)
and P = (P, P,, - - - ,Py) is the probability assignment

on the input alphabet. After substitution for P (r | m) from
Eq. (6) into Eq. (9), we have

IM (a, P) =

(2%)
€xXp '—"2‘(1“

X / g (R) Z P,l, (aR.) lnTI—OM dR
;>0 m=1 2 Pklo(aﬂk)

il M k=1

(10)

Since g (R) is a probability density, we can write, after
splitting up the logarithm,

Iu (a, P) =

exp <~ 3 a) E[ S Pl (aB) In, (aRm)]

m=1

1 M M
— exp (—~ 3 a2> E|: 2 P,ul,(aR,)In 3 P, (aRk):I
m=1 k=1
(11)
where E[ ] denotes expectation with respect to the
probability density g(R). We can further simplify the

expression above by noting that the first term in Eq. (11)
is independent of P, because

exp (—- é az) E l: §1 P,l, (aRm> Inl, (aR’”)]

— exp (— é—a) E (I, (aRy) In T, (Ry)] § Pn
= exp <~— %a"') E[I,(aR,)In1, («R,)]
- / " rexp [- é (r + QZ)] I, (ar) In I, (ar) dr

(12)
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We are now ready to maximize the information Iy (a, P)
and thereby to determine the capacity of the MFSK
channel.

IV. Maximization of Information and
Wideband Capacity

All of the results of this section are summarized in
Theorem 1. Let

Le(a) £ sup Iy (o, P)
P

M
Sy = 3 I,(aRy)

m=1

Note that E [I, (aRn)] = n forallm = 1,2 -+ M, where

w= fwxexp(—xz/Z) I, (ax) dx = exp (a?/2) (13)
THEOREM 1.
(a) Iu(e) = exp(—a*/2)

X {E [Ls («R:) InT, (oR))] — E [%il o E\ﬂ}

(14)
(b) L (@) > Ly () (15)
(c) I(a) = erlf:o Iy ()
= exp (—¢’) {E [Io (eRy) In I, («R))] — plnp}
(16)
— / “rexp (— r ; “2>10 () In1, (ar) dr — %
a7

Division of Eq. (17) by T and C, = S/N, nats'/second
yields the wideband capacity result stated in Eq. (1).

Proof:

(a) Maximization. Since the first term in Eq. (11) is
independent of P, we maximize Iy («, P) by minimizing
the second term

GP) = E[ S Pl («Ri)ln 3 Pklo(aﬂk>] (18)

m=1 k=1

10ne bit = 0.693 nats.
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We observe that G (P) is the expectation of the convex
function xIn x; therefore, G (P) is also convex, and so any
critical point P, will produce the global minimum. To
determine such a critical point, we set

??,‘[G(P)—%% Pm—l)]:o (19)

where A is a Lagrange multiplier accounting for the con-
straint on the sum of the probabilities being unity. The
result is

E [ 0 <C¥R >ln 2 PmI() (aRm) + I(‘ ((XB >:|

m1

or

M
E I:Io (eR;)In 3 P.l, (aRm)] == constant fori==M

m=l

(20)
Setting
1
P,=P,= - :pM:.Z\7
produces a probability vector which does the job.
(b) Monotonicity. By the foregoing, G (P,) = G (P”).

Take P’ such that

1

and Py = 0. Obviously P’ is a critical point for Iy, but not
necessarily for Iy; consequently,

Li(@) =1y (0, P)> Iy (0, P) =1y (a)  (21)

(c) Wideband capacity. Here we must prove that

limE[ In SM:' =ulnp

Mow©

Since Sy is the sum of M identically distributed random
variables

L,(aR,),IO (ali) o In ((YRM>

we have, by the strong law of large numbers (Ref. 3),

Su
}141{2; M = a.e.
and also
S S
lim ‘—’[’ In— ¥ B U In I a.e.
Moo i
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Consequently, one is inclined to conjecture that

. S S o \
lim E [”—M(“lm —%"‘)] = plnp =3 exp(a?/2)

M
We use martingale theory (Ref. 3) to establish this.

Definition:

A sequence of random variables V,, V., - - - forms a
(sub-) martingale with respect to the increasing sequence

of Borel fields &, C £, C - - - if and only if
(i) V., is measurable with respect to ,.
ii) E[|Va]] < 0.

(iti) E[Va|Fna] (=)= Vs a.e.

Let X,, X,, - - - be identically distributed random vari-
ables having finite mean. Let S, = X, + « X, Let

= B(S,, Sy, - - *), the Borel field generated by
S., Ses, - - - . Let Z, = S,/n. The term Z, is measurable
with respect to B,, while {* -+ ,Bu Bns, - - ,B:} is a
sequence of increasing Borel fields.

LemMma 1.
{ . ZnZn,, - ,Z} is a martingale with respect
tO{ o '71877’[))"*17 T ’Bl}'
Proof:
(i) By construction, Z, is measurable with respect to
B
) EN AZ" 1X,]
(11)E[|Zn|]—E[n = E "

=E [|X1 |] < .
(iii) By permutability of the X;’s,

E [X7 I Sn] =E [X1 | Sn] a.e.

Thus

sn:E[sn|sn]:E[ﬁ lesn]

= .2 E[X;|S.] =nE[X,]|S.] a.e.

or

E[X.|S,] =8,/n a.e.
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Now consider

S
ElZ.12,] = B[ 7

1 n-1
s,,} =t lEl:jEl xj|sn]

1 S?L S"/
= —= =12, a.e
n—1 n n
Equivalently,
E [Zn'l |/8n] =Zn a.e.

and so the lemma holds.

COROLLARY 1.

If ¢ is a function which is convex and continuous on a
convex set containing the range of X, and if

El|¢(X)]]<

then {¢(S./n)}. is a submartingale and

E |: é <—Sn—">} decreases monotonically to ¢ (E [X,])

Applying this to the function ¢ (X) = XInX with X =
I, (ary) yields the result desired in Theorem 1(c).

Proof:

Since

is a martingale,

oalelsn) oo

is a submartingale. By the martingale convergence
theorem, there exists a unique random variable w, mea-
surable with respect to 8, = N B,, such that

n

Su
m ¢ (7> =w a.e.
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and

limEq&(%) = E [w]

By the strong law of large numbers,

S,
lim — = E [X,] a.e.

now

Since ¢ is continuous,

lim ¢ (%) = ¢(lim &> = ¢ (E[X,]) a.e.

n-w n—-wo

Hence

[s(®)

is a submartingale,

Therefore

downverges to ¢ (E [x,]).

V. Selection of the Number of Signals M

In the preceding sections, it was established that the
capacity Cy («) of an MFSK system increases monotoni-
cally to the limit C(«) as the number of signals M is
increased. Practical systems must utilize a finite input
alphabet not only because the bandwidth W = M /2T is
finite, but, more important, because the system complexity,
as measured by the number of arithmetical operations,
must be kept small. Since C () is finite, we know that
Cu (a) can be pushed as close to this limit as necessary.
For all practical purposes, however, it is sufficient to
determine an M such that Cy/C (a) is near 100%. The
purpose of this section is to determine useful analytical
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bounds on M, It is necessary to consider the case when
/2 = S8T/N, is small separately from the case when
ST/N, becomes large.

A. Behavior of C;, («) vs M when ST/N, is small
Subtracting Eq. (14) from Eq. (16) yields

1 Sy, Si
I{a) — Iy (a) :I{E[A;lnl—}'] —,Lln,L}

1 TSu. Sy 1/Su\* | 1/Su\?
ﬁ,L{E[Ml“M 2<M> 2<\1>] “1““}

(22)

But

1
¢(x}ﬁxlnx~—2—x”

is convex and continuous for x > 1; consequently,
Ef¢ (x)] =¢ (E [x])
Applying this result to the equation above produces

1 1 1
I(a) - IM(“)é;{IU,ln/L - E‘uz + OM? E [S%,] - LLlIlM}

But the expected value of the square of a sum of identi-
cally distributed random variables is

E [S‘%,] - M02 + 1\42“2

where

el 2

o = E[I3(ar)] — p* = / I3 (ar) rexp <— %) dr — expa*

J O

()]

n=0

*a_‘t 1+ 2+i,4,1‘...
~4 « 10(1 t

Thercfore,
0,2

— ~
T{e) = L (o) = 2uM

Finally, since
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we obtain

Cx (@) o

1> R S
2. M (a)

Using our curve-fitting approximation

o 1
>4 -
He) 255 T ot /4
and
n = exp (®/2y =1+ a*/2 +a*/8+ - -

we obtain

_ 1+ 3/4a® + 0(a*)

1>
C (w) M

fora® < 1

Thus, as «*/2 > 0,
CM (a)/C (a) e d (Z\I — 1>/M

Achieving 99% of capacity requires an M = 100 even when
a?/2 - 0.

B. Behavior of Cy (a)/C (o) With M When ST/N, Is Large

The lower bound on Cy («)/C () derived for small « is
inadequate when a becomes large, because o* increases as
exp 2o2, and this would require M to grow as exp (1.5 «%),
which is too large. We do know, however, that In M must
grow at least as fast as I (a) = o*/2 for large a because the
information at the input of the channel must be at least as
high as the capacity.

Rewriting Eq. (22), we have

_ Su . Su
-1, = E[H‘M In “M}

which, by symmetry, is

X Sy + X,
I—IM:E[—“ In (——-—” i )} [Xu = I (ary)]
© iy

By conditional expectation,

X Sy +X
I— IM - E —M E h’l —"‘—M 'V l X}l
© nM
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By Jensen’s inequality,

X Syl +X
I~1MéE|:——£]n<.F.[_{L__f{_
1

)= (/)]

uwM
- /w'exp[—%(r” + o) }IO (ar) ln<1 o Lofar) exp gw—azﬂ) - 1) s
< /w,exp |:"_ El (1‘2 -+ (12)] I, ((XT) In [1 + 1, (ar) exp(_a2/2 _ lnM] (25)

Further analytical approximation can now be used to

show that
1
(I~ La/1 =0 (—)
&

as a—> o« when

InM =% + Ka

0

I—1Iy<

[39]

+

Combining the In2 terms yields

2]

@+ K
</ rl, {ar exp[—l(rZJr )jlandr

so that, ultimately, when « is very large, taking M ~
exp (o?/2) will suffice to achieve Cy (o) = C (). To dem-
onstrate this, note that

I, (ar) = e (26)

and let

1mM:éaz+1<Lz (27)

rl, (ar) exp [~ = (r* + z):] In(1 + exp (ar — o* — Ka)) dr

rIO (ar) exp [— i(r +a? )] {ar — o* — Ka + In2) dr

I*IM<IH2+/ TI(,(aT)eXp[:—“—z—(r:+a2)i|(ar*a2"Ka)dT

a+ K

<ln2+a/ rexp[
—ln2+a/ (r+

K2
= hid 2 =
Aln2+K<l+K>exp< 2) forK >1
I-— I;,é 4 2In2 K: 2 K:
—I_“<1+E)[ o +dKeXp<_ 2>+—KTGXP<* 2>] (28)
Thus This shows that the number of signals required to achieve
a Cy (a) close to C (a) when « is large grows as
i __CM >~ 2 2 /N
Mm@ =" oe-K2 (@) M ~ exp [a*/2.(1 + 2K /a)] (30)
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V1. Conclusion

In summary, the MFSK system capacity behaves roughly
as follows:

co S ST/N,
¥~ N2+ ST/N,

1— L if ST/N, < 1
M 1 / o<

In M

X g%fT if ST/No>>M>> 1

In2

e ————— ] >

1 ST N, ifM = ST/N,>>1

(31)

The middle term was obtained from the fact that I, =~In M
for «*/2>>InM.

We observe that MFSK systems capable of receiving a
reasonably small number of orthogonal signals, such as

the M = 64 MFSK receiver under construction for the
DSN, have the potential of operating above 90% of C («)
at predetection signal-to-noise ratios of less than about 2.
This does not mean that systems with a limited number of
signals are necessarily inefficient at high ST /N,. The effi-
ciency can be maintained by reducing T and increasing
the rate proportionately, as is common practice even in the
case of coherent systems. However, it must be remem-
bered that C () is itself an increasing function of «, and
this, together with code efficiency, must be taken into
account when such tradeoffs are made.

Comparing these results with the hard-decision MFSK
channel of Ref. 4, we note that the unquantized capacity
always increases with M as opposed to first increasing and
then decreasing as in the hard-quantized channel. This
leads us to conjecture that unavoidable quantization in
practical receivers ultimately destroys the monotonically
increasing property in Cy (a), as observed in Ref. 5.
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